

Panarine from MeOH-H₂O gave the dihydrate: C₂₀H₂₂N₂O₂·2H₂O which crystallized in the orthorhombic system, space group P2₁2₁2₁ with z = 4 molecules in a unit cell of dimensions a: 9.125(5), b: 13.414(8), c: 14.953(7) Å.

Acknowledgements—We wish to thank Dr B. M. Boom (The New York Botanical Garden, Bronx, New York) for kindly making available the sample of Panare curare. We are also grateful to M. Remy for his technical assistance. This work was supported by the Belgian National Fund for Scientific Research (FNRS) and by a grant from the Research Fund of the Faculty of Medicine, University of Liège. The NMR spectra were recorded at 400 MHz for ¹H and 100 MHz for ¹³C in the CREMAN ('Centre de Resonance Magnétique Nucléaire de l'Université de Liège').

REFERENCES

1. Ito, Y. (1986) *Trends Anal. Chem.* **5**, 6.
2. Ito, Y. (1986) *CRC Crit. Rev. Anal. Chem.* **17**, 65.
3. Hostettmann, K., Hostettmann, M. and Marston, A. (1986) in: *Preparative Chromatography Techniques*, p. 80. Springer, Berlin.
4. Martin, D. G., Biles, C. and Petonen, R. E. (Dec. 1986) International Laboratory, 18.
5. Boom, B. M., (1987) *J. Washington Acad. Sci.* **77**, 178.
6. Angenot, L. (1975) *Planta Med.* **27**, 24.
7. Braga, R. M. and Reis, F. de A. M. (1987) *Phytochemistry* **26**, 833.
8. Lounasmaa, M., Jokela, R., Tolvanen, A. and Kan, S. K. (1985) *Planta Med.* **51**, 519.
9. Dupont, L., Dideberg, O., Sbit, M., Quetin-Leclercq, J. and Angenot, L. (1988) *Acta Cryst.* (in press).
10. Toth, G., Hetenyi, F., Clauder, O. and Kajtar, M. (1978) *Liebigs Ann. Chem.* 1096.
11. Hoskinen, A., Lounasmaa, M. (1983) *Fortschr. Chem. Org., Naturstoffe* **43**, 267.
12. Wenkert, E. and Bringi, N. V. (1959) *J. Am. Chem. Soc.* **81**, 1474.
13. Schun, Y. and Cordell, G. A. (1987) *Phytochemistry* **26**, 2875.
14. Aimi, N., Yamaguchi, K., Sakai, S. I., Haginawa, J. and Kubo, A. (1978) *Chem. Pharm. Bull.* **26**, 3444.
15. Henley, P. (1982) *The Panare. Tradition and Change on the Amazonian Frontier*, pp. 25, 58. Yale University Press, New Haven.
16. Battersby, A. R., Binks, R., Hodson, H. F. and Yeowell, D. A. (1960) *J. Chem. Soc.* 1848.

Phytochemistry, Vol. 27, No. 12, pp. 4004-4005, 1988.
Printed in Great Britain.

0031 9422/88 \$3.00 + 0.00
© 1988 Pergamon Press plc.

ALKALOIDS FROM PSEUDUVARIA INDOCHINENSIS

ZHONG SHOU-MING,* ZHAO SHOU-SHUN and XIE NING

China Pharmaceutical University, Nanjing, China

(Received 25 April 1988)

Key Word Index—*Pseuduvaria indochinensis*; Annonaceae; protoberberine; dehydroscoulerine; liriodenine; atherospermidine; oxoanolobine.

Abstract—Phytochemical investigation of the stem bark of *Pseuduvaria indochinensis* has led to the isolation and identification of a novel quaternary protoberberine alkaloid, dehydroscoulerine, together with three known oxoaporphine alkaloids, liriodenine, atherospermidine and oxoanolobine.

INTRODUCTION

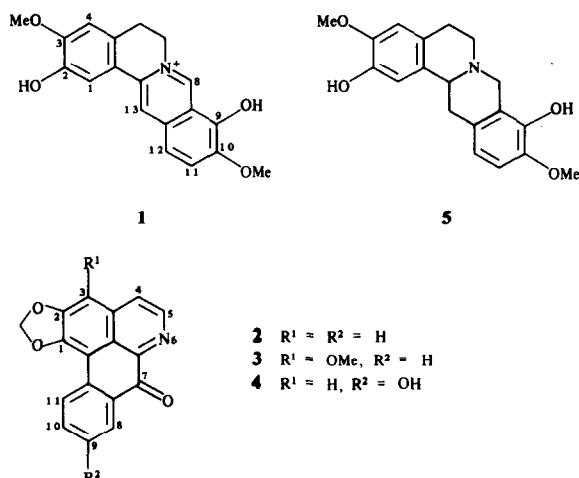
Pseuduvaria indochinensis Merr. (Annonaceae) is a rain-forest tree, and the only species of the genus in China [1]. No previous chemical investigation has been reported on this species. The present study has resulted in the isolation of a novel quaternary protoberberine alkaloid, dehydroscoulerine (**1**), and three known oxoaporphine alkaloids, liriodenine (**2**), atherospermidine (**3**) and oxoanolobine (**4**).

RESULTS AND DISCUSSION

Compound **1** was obtained from the water-soluble part of the extractives and crystallized from methanol as orange-red needles, mp 275–276° (dec). FABMS showed [M]⁺ at m/z 324. UV λ_{max} 229, 279, 350 nm, suggested a quaternary protoberberine type alkaloid [2]. Upon addition of base, the UV spectrum underwent a significant bathochromic shift, which indicated the presence of phenolic groups. This was further supported by IR absorption bands between 3600 to 3200 cm⁻¹. The ¹H NMR (DMSO-*d*₆) revealed the presence of six aromatic protons that can be assigned to H-4 (δ 6.98), H-1

*Author to whom correspondence should be addressed.

(δ 7.50), H-11, 12 (δ 7.72), H-13 (δ 8.15) and H-8 (δ 9.42). The existence of two methoxyl groups indicated by the signals at δ 3.87 and 4.01 leaves little doubt that the other substituents are two hydroxy groups. The position of two methoxyl substituents was established by means of NOE experiments. When the signal at δ 3.87 was irradiated, an intensity increase of 18% of the proton signal at δ 6.98 was observed. Upon saturation of the signal at δ 4.01, an intensity increase of 9% was found for the signal at δ 7.72. Thus a 2-OH, 3-OMe, 9-OH, 10-OMe substitution pattern was confirmed. The spectroscopic data of the tetrahydro-derivative of **1** was found to be identical to that of scoulerine [3]. Thus **1** is 2,9-dihydroxy-3,10-dimethoxy-5,6-dihydro-dibenzo[*a, g*]quinolizinium and the trivial name, dehydroscoulerine, is proposed. To date, only a few protoberberine type alkaloids have been recorded from the Annonaceae mainly in the genus *Enantia* [4].


On the basis of UV, IR, MS and ^1H NMR spectral data and melting points, compounds **2**, **3** and **4** were found to be identical to liriodenine [5], atherspermidine [6] and oxoanolobine [7], respectively.

EXPERIMENTAL

Mps: uncorr. UV spectra were run in MeOH and IR spectra in KBr discs. ^1H NMR spectra were run at 90 MHz with TMS as int. standard. MS: unless otherwise stated, direct inlet, 70 eV.

Plant material. The stem bark of *Pseuduvaria indochinensis* was collected at Xishuangbanna in Yuennan Province, China, and authenticated by Prof. Y. H. Li. A voucher specimen has been deposited in the Herbarium of Kunming Institute of Botany, Science Academy of China.

Extraction and isolation. The ground stem bark (2.5 kg) was extracted by percolation with 95% EtOH at room temp. to obtain a thick syrup (204 g). The syrup was extracted with a soln of 5% acetic acid (6×200 ml). The acidic extract was made alkaline to pH 10 with NH_4OH solution and extracted with CH_2Cl_2 (5×500 ml). The CH_2Cl_2 extract was dried over Na_2SO_4 and concd to yield a syrup (9.8 g). The syrup was chromatographed over silica gel column eluted with CH_2Cl_2 -MeOH in different ratios. Fractions (16–20) yielded yellow needles (**2**, 172 mg). The aqueous solution, after removal of tertiary alkaloids, was acidified to pH 5 with glacial acetic acid. The acidic solution was treated with ammonium reinickate in the usual way to obtain crude quaternary alkaloids (0.8 g). CC over silica gel containing 0.5% Na_2CO_3 , using CHCl_3 -MeOH- $(\text{C}_2\text{H}_5)_2\text{NH}$ (20:2:1) as eluting solvent mixture, furnished orange-red needles (**1**, 19 mg). The acidic water-insoluble residue (186 g) was extracted with cyclohexane, methylene chloride, EtOAc and MeOH, respectively. The methylene chloride extract was subjected to a silica gel column separation. Treatment of fractions (48–51) through rotatory TLC yielded orange needles (**3**, 16 mg). Chrom. separation of the ethyl acetate extractive gave an orange powder (**4**, 18 mg).

Dehydroscoulerine (**1**). Mp 275–276° (dec.); FABMS 324 [M] $^+$; IR ν_{max} cm $^{-1}$: 3600–3200 (v-OH), 1605, 1505, 1010; UV λ_{max} nm (log ϵ): 229 (4.22), 279 (4.27), 350 (4.21), $\lambda_{\text{max}}^{\text{MeOH}+1\% \text{NaOH}}$ 248 (4.18), 283 (4.38), 379 (4.31); ^1H NMR (DMSO- d_6): δ 3.87 (3H, s, C₃-OMe), 4.01 (3H, s, C₁₀-Me), 6.98 (1H, s, H-4), 7.50 (1H, s, H-1), 7.72 (2H, s, H-11, 12), 8.51 (1H, s, H-13), 8.94 (1H, s, H-8). Hydrogenation of (**1**) with KBH_4 in hot methanol, followed by crystallization in MeOH gave yellowish needles, which was found to be identical to scoulerine (**5**).

Acknowledgements—The authors thank Prof. Peter G. Waterman (Phytochemistry Laboratories, University of Strathclyde, Glasgow, U. K.) for his valuable suggestions.

REFERENCES

1. How, F. C., Wu, T. L. and W. C. (1982) *A Dictionary of the Families and Genera of Chinese Seed Plants*, 2nd Edn. Science Press, Beijing.
2. Shamma, M., Hillman, M. J. and Jones, C. D. (1969) *Chem. Rev.* **69**, 779.
3. Brochman-Hanssen, E. and Nielsen, B. (1966) *Tetrahedron Letters* 2261.
4. Leboeuf, M., Cavé, A., Bhaumik, P. K., Mukherjee, B. and Mukherjee, R. (1982) *Phytochemistry* **21**, 2783.
5. Bick, I. R. C. and Douglas, G. K. (1964) *Tetrahedron Letters*, 1629.
6. Bick, I. R. C., Bowie, J. H. and Douglas, G. K. (1967) *Aust. J. Chem.* **20**, 1403.
7. Phoebe, C. H. Jr., Schiff, P. L. Jr., Knapp, J. K. and Slatkin, D. J. (1980) *Heterocycles* **14**, 1977.